giúp mình với! đề thi HK2

3

3244

Ta có $$I=\int_{0}^{1}\frac{dx}{(1+x^3)\sqrt[3]{1+x^3}}$$
$$=\int_{0}^{1}\frac{1+x^3-x^3}{(1+x^3)\sqrt[3]{1+x^3}}dx$$
$$=\int_{0}^{1}\frac{dx}{\sqrt[3]{1+x^3}}-\int_{0}^{1}\frac{x^3}{(1+x^3)\sqrt[3]{1+x^3}}dx$$
$$=I_{1}+I_{2}$$
Tính $I_{1}$
$$I_{1}=\int_{0}^{1}\frac{dx}{\sqrt[3]{1+x^3}}$$
Đặt $$u=\frac{1}{\sqrt[3]{1+x^3}}\leftrightarrow du=\frac{-x^2}{(1+x^3)\sqrt[3]{1+x^3}}dx$$
$$ dv=dx\leftrightarrow v=x$$
Vậy $I_{1}$$$=\left.\begin{matrix}
\frac{x}{\sqrt[3]{1+x^3}}
\end{matrix}\right|^1_0+\int_{0}^{1}\frac{x^3}{(1+x^3)\sqrt[3]{1+x^3}}dx$$
$$=\frac{1}{\sqrt[3]{2}}+I_{2}$$
Do đó $$I=I_{1}-I_{2}=\frac{1}{\sqrt[3]{2}}+I_{2}-I_{2}=\frac{1}{\sqrt[3]{2}}$$
 
Top Bottom