tớ làm ra cả 3 bài rồi chờ xíu để tớ post bài 1 lên :d , có thời gian tớ sẽ post bài 2,3 lên
[tex]\int_{}^{}{\frac{x}{(x-1)^2sqrt(1+2x-x^2)}dx[/tex]
[tex]\int_{}^{}{\frac{x-1}{(x-1)^2sqrt(2-(x-1)^2)}dx%20+%20\int{\frac{dx}{(x-1)^2sqrt(2-(x-1)^2)}[/tex]
[tex]%20x-1=u%20=%3E%20dx=du[/tex]
[tex]%20\int_{}^{}{\frac{u}{u^2sqrt{2-u^2}}du%20+%20\int{\frac{du}{u^2sqrt{2-u^2}}%20=%20\int_{}^{}{\frac{du}{u%20sqrt{2-u^2}}%20+%20\int{\frac{du}{u^2sqrt{2-u^2}}[/tex]
[tex]K%20=%20\int_{}^{}{\frac{du}{u%20sqrt{2-u^2}}[/tex]
[tex]P=%20\int{\frac{du}{u^2sqrt{2-u^2}}[/tex]
- Giải K
[tex]u%20=%20\frac{1}{t}%20=%3E%20du%20=%20\frac{-dt}{t^2}[/tex]
[tex]\int_{}^{}{\frac{x}{(x-1)^2sqrt(1+2x-x^2)}dx%20=\int{\frac{-dt}{t%20sqrt{2-\frac{1}{t^2}}}%20=%20\int{\frac{-dt}{sqrt{2t^2%20-%201}}%20=%20\frac{-1}{2}ln|%202t+sqrt{2t^2-1}|%20=%20\frac{-1}{2}ln|%20\frac{2}{u}+sqrt{\frac{1}{u^2}-1}|[/tex]
- Giải P
[tex]=%3E%20ut=sqrt{2-u^2}%20=%3E%20u^2t^2=2-u^2%20%3C=%3E%20u^2%20=\frac{2}{t^2+1}[/tex]
[tex]=%3E%20udu%20=%20\frac{-2tdt}{(t^2+1)^2}[/tex]
[tex]%20=%3E%20P%20=%20\frac{-1}{2}\int{dt}%20=%20\frac{-1}{2}t%20=%20\frac{-sqrt{2-u^2}}{2u}[/tex]
[tex]\int_{}^{}{\frac{x}{(x-1)^2sqrt(1+2x-x^2)}dx%20=%20\frac{-1}{2}ln|%20\frac{2}{u}+sqrt{\frac{1}{u^2}-1}|%20+%20\frac{-sqrt{2-u^2}}{2u}%20+%20C[/tex]