View attachment 158546
Em mong mn giúp em sớm, mai em thi HKII Toán
8) Ta có $(a-b)^{2}\geq 0$
$a^{2}+b^{2} -2ab \geq 0$
=> $a^{2}+b^{2} \geq 2ab$
$a^{2}+b^{2}+a^{2}+b^{2} \geq a^{2}+b^{2}+2ab$
$2(a^{2}+b^{2}) \geq (a+b)^{2} = 1$
=> $a^{2}+b^{2} \geq \frac{1}{2}$
5)a)$\frac{1-2x-4}{4} < \frac{1-5x}{8}$
$\frac{10-4x}{8} < \frac{1-5x}{8}$
=> 10-4x<1-5x
=> -4x+5x=x<1-10=-9
x<-9
b)$\frac{5(2x+1)}{4} \geq \frac{8x-1}{3}$
=>$ \frac{15(2x+1)}{12} \geq \frac{4(8x-1)}{12}$
=> $30x+15 \geq 32x-4$
=> $30x-32x \geq -4-15=-19$
$-2x \geq -19$
$x \leq \frac{19}{2}$
c) |x+5| = 3x+1
VT>=0
=> VP>=0
3x+1>=0
x>=-1/3
=> x+5>0
=> |x+5| = x+5 = 3x+1
=> 2x=4
x=2