giúp mình giải bài toán khó này với

N

ngomaithuy93

cho hình chóp SABCD có ABCD là hình vuông cạnh a.Cho SA vuông góc với mặt phẳng ABCD cho SA=căn2a. hãy xác dịnh và tính góc của hai mat phẳng (SAC) và (SBC). giúp mình với
790.9912643_1_1.bmp

Gọi O là trung điểm của AC [TEX]\Rightarrow OB \perp (SAC)[/TEX]
[TEX]SC=(SAC)\bigcap_{}^{}(SBC)[/TEX]
Kẻ [TEX]OM \perp SC \Rightarrow BM \perp SC[/TEX].
Vậy [TEX]\widehat{(SAC),(SBC)}=\widehat{OM,BM}[/TEX]
* Tính [TEX]\widehat{OMB}:[/TEX]
Kẻ [TEX]AH \perp SC \Rightarrow AH=a \Rightarrow OM=\frac{a}{2}[/TEX]
[TEX]OB=\frac{a\sqrt{2}}{2}[/TEX]
[TEX] BM=\frac{a\sqrt{3}}{2}[/TEX]
[TEX] cos\widehat{OMB}=\frac{OM^2+BM^2-OB^2}{2OM.BM}=\frac{1}{\sqrt{3}}[/TEX]
 
V

vanculete

bài này mình bổ xung thêm 1 ý để c/m có sức thuyết phục hơn ( hay nói cách khác dễ hiểu

hơn 1 tí )

chèn vào bài của bạn ý nhe

[TEX] AB \perp \ (SAC) [/TEX]


[TEX] ( SAC) \bigcap (SBC) =SC [/TEX] , gọi [TEX]M[/TEX] là hình chiếu của [TEX]O [/TEX]trên [TEX](SBC) => M \in (SC)[/TEX]


[TEX]AB \perp \ SC => BM \perp \ SC [/TEX]( theo định lí 3 đường vuông góc )
 
U

uyencanhcut

bài này mình bổ xung thêm 1 ý để c/m có sức thuyết phục hơn ( hay nói cách khác dễ hiểu

hơn 1 tí )

chèn vào bài của bạn ý nhe

[TEX] AB \perp \ (SAC) [/TEX]


[TEX] ( SAC) \bigcap (SBC) =SC [/TEX] , gọi [TEX]M[/TEX] là hình chiếu của [TEX]O [/TEX]trên [TEX](SBC) => M \in (SC)[/TEX]


[TEX]AB \perp \ SC => BM \perp \ SC [/TEX]( theo định lí 3 đường vuông góc )
ủa bạn ơi tại sao mình chứng minh đc AB vuông với (SAC)? chỉ mình với
 
Top Bottom