cho dãy số (un) xác định bới u1=[TEX]sqrt{2}[/TEX],un+1 = un + [TEX]\sqrt[n+2] {\frac {n+2}{n+1}}[/TEX], với mọi n\geq1
Chứng minh rằng: lim(un/n)=1 khi n dần đên + [TEX]\infty[/TEX]
Cách 1:
[TEX]u_n=(u_n-u_{n-1})+(u_{n-1}-u_{n-2})+...+(u_2-u_1)+u_1[/TEX]
[TEX]\Rightarrow u_n=\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+...+\sqrt{\frac{3}{2}}+\sqrt{2}[/TEX]
[TEX]\Rightarrow \frac{u_n}{n}=\frac{1}{n}(\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+...+\sqrt{\frac{3}{2}}+\sqrt{2})[/TEX]
[TEX]\leq \frac{1}{n}(\sqrt{1+\frac{1}{n}}+\sqrt{1+\frac{1}{n-1}}+...+\sqrt{1+\frac{1}{2}}+\sqrt{1+1})[/TEX]
[TEX]\leq \frac{1}{n}[n+(\frac{1}{n}+\frac{1}{n-1}+...+\frac{1}{2}+1)]=1+\frac{1}{n}(\frac{1}{n}+\frac{1}{n-1}+...+\frac{1}{2}+1)=v_n[/TEX]
[TEX]\left{{1 \leq u_n \leq v_n }\\{lim v_n=1} \Rightarrow lim u_n=1[/TEX]
Cách 2: Sử dụng định lí Stolz:
[TEX]\fbox{\tex Day v_n tang-ngat , lim v_n=+\infty, \lim_{n \to + \infty}\frac{u_{n+1}-u_n}{v_{n+1}-v_n}=a. Khi do:\lim_{n \to + \infty} \frac{u_n}{v_n}=a[/TEX]
Áp dụng vào bài này. Ở đây: [TEX]x_n=u_n, y_n=n[/TEX]
[TEX]lim\frac{u_n}{n}=lim\frac{u_{n+1}}{n+1}=lim\frac{u_{n+1}-u_n}{n+1-n}=lim \sqrt[n+2]{\frac{n+2}{n+1}}=limv_n[/TEX]
[TEX]1 \leq v_n \leq 1+\frac{1}{n+1} \Rightarrow dpcm.[/TEX]