Giúp minh câu này với

T

truongduong9083

mình gợi ý giúp bạn nhé


từ giả thiết ta có
[TEX]cos^2x = \frac{1}{1+(\sqrt{6}+\sqrt{2}-\sqrt{3}- 2)^2}[/TEX]
[TEX]\Rightarrow tanx = \sqrt{6}+\sqrt{2}-\sqrt{3}- 2=(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)[/TEX]
Do [TEX]tan2x = \frac{2tanx}{1-tan^2x} = \frac{2}{\frac{1}{tanx}-tanx} = \frac{2}{\frac{1}{(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)}-(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)} = \frac{2}{(\sqrt{3}+\sqrt{2})(\sqrt{2}+1) - (\sqrt{3}-\sqrt{2})(\sqrt{2}-1)} = \frac{2}{4+2\sqrt{3}} = \frac{2}{(\sqrt{3}+1)^2} = \frac{(\sqrt{3}+1)(\sqrt{3}-1)}{(\sqrt{3}+1)^2} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{tan(\frac{\pi}{3}) - tan(\frac{\pi}{4})}{1+tan(\frac{\pi}{3}).tan(\frac{\pi}{4})} = tan(\frac{\pi}{12})[/TEX]
Vậy
[TEX]x =\frac{\pi}{24} [/TEX]
 
Last edited by a moderator:
Top Bottom