Giúp mình bài này

L

lovelycat_handoi95

CMBĐT[TEX]:\sqrt{x^2 +\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}} \geq 82 vs x, y ,z >0 xyz=1 [/TEX]

AD BĐT Bunhia có [TEX](x+\frac{9}{x}) \leq (1+9^2)(x^2+\frac{1}{x^})[/TEX]
[TEX]\Leftrightarrow x+\frac{9}{x} \leq \sqrt{82}.\sqrt{x^2+\frac{1}{x^2} }(1)[/TEX]


Tương tự ta có

[TEX] y+\frac{9}{y} \leq \sqrt{82}.\sqrt{y^2+\frac{1}{y^2} }(2)[/TEX]
[TEX]z+\frac{9}{z} \leq \sqrt{82}.\sqrt{z^2+\frac{1}{z^2} }(3)[/TEX]

Cộng 3 vế (1),(2),(3) ta có

[TEX]sqrt{82}(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}} )\geq x+y+z + 9(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) \geq 3\sqrt[3]{xyz}+9.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}} =30[/TEX]
 
Top Bottom