giúp mình bài này với!!

N

nganltt_lc

cho biểu thức P= a^2/[(1-b)(a+b)]-b^2/[(1+a)(a+b)]-(ab)^2/[(1+a)(1-b)]
a, Rút gọn P
b, Tìm các cặp số nguyên(a;b) sao cho P=-3
:confused:

[TEX]P= \frac{a^2}{(1-b)(a+b)}-\frac{b^2}{(1+a)(a+b)}- \frac{(ab)^2}{(1+a)(1-b)}[/TEX]

[TEX]= \frac{{a}^{2}\left(1+a \right)-{b}^{2}\left(1-b \right)-{\left(ab \right)}^{2}\left(a+b \right)}{\left(1+a \right)\left(1-b \right)\left(a+b \right)}[/TEX]

[TEX]= \frac{a^2+a^3 - b^2 + b^3 - (ab)^2(a+b)}{\left(1+a \right)\left(1-b \right)\left(a+b \right)} [/TEX]

[TEX]= \frac{\left( a^2-b^2\right) + \left( a^3 + b^3\right) - (ab)^2(a+b)}{\left(1+a \right)\left(1-b \right)\left(a+b \right)}[/TEX]

[TEX]= \frac{\left( a-b\right)\left(a+b \right) + \left( a + b\right)\left(a^2-ab+b^2 \right) - (ab)^2(a+b)}{\left(1+a \right)\left(1-b \right)\left(a+b \right)}[/TEX]

[TEX]= \frac{\left(a+b \right)\left(a-b+a^2-ab+b^2-a^2b^2 \right)}{\left(1+a \right)\left(1-b \right)\left(a+b \right)}[/TEX]

[TEX]=\frac{a-b+a^2-ab+b^2-a^2b^2}{\left(1+a \right)\left(1-b \right)} [/TEX]

[TEX]= \frac{\left( a-b\right)+a\left(a-b\right)+b^2\left(1-a^2\right)}{\left(1+a \right)\left(1-b \right)}[/TEX]

[TEX]= \frac{\left( a-b\right)\left(a+1 \right)+b^2\left(1-a\right)\left(1+a \right)}{\left(1+a \right)\left(1-b \right)}[/TEX]

[TEX]= \frac{\left(a+1 \right)\left(a-b+b^2-ab^2 \right)}{\left(1+a \right)\left(1-b \right)}[/TEX]

[TEX]=\frac{a-b+b^2-ab^2 }{\left(1-b \right)} [/TEX]

[TEX]= \frac{b\left(b-1\right)-a\left(b^2-1 \right) }{\left(1-b \right)}[/TEX]

[TEX]= \frac{b\left(b-1\right)-a\left(b-1 \right)\left(b+1 \right) }{\left(1-b \right)} [/TEX]

[TEX]= \frac{\left(b-1 \right)\left(b-ab+a \right)}{\left(1-b \right)}[/TEX]

[TEX]= -\left( b-ab+a\right)[/TEX]
 
Top Bottom