giúp em bài tập này nha

N

nhuquynhdat

Kẻ $BI//MN, CK//MN(I,K \in MN)$

CM : $\Delta BID=\Delta CKD(G-C-G)$

=> $ID=IK$ => $IK=2ID$

xÉT $\Delta ABI$ có $BI//EG$

=> $\dfrac{AB}{AE}=\dfrac{AI}{AG}$

Xét $\Delta ACK$ có $CK//GF$

=> $\dfrac{AC}{AF}=\dfrac{AK}{AG}$

=> $\dfrac{AB}{AE}+\dfrac{AC}{AF}=\dfrac{AI}{AG}+ \dfrac{AK}{AG}$

= > $\dfrac{AI+AK}{AG}=\dfrac{AI+AI+2ID}{AG}=\dfrac{2(AI+ID)}{AG}=\dfrac{2AD}

{AG}=\dfrac{3}{2}.2=3$
 
N

nhuquynhdat

Xét $\Delta ABI$ có $BI//EG$

=> $\dfrac{BE}{AE}=\dfrac{GI}{AG}$

Xét $\Delta ACK$ có $CK//GF$

=> $\dfrac{CF}{AF}=\dfrac{GK}{AG}$

=> $\dfrac{BE}{AE}+ \dfrac{CF}{AF} = \dfrac{GI}{AG}+ \dfrac{GK}{AG} =

\dfrac{GI+GK}{AG}=\dfrac{GI+GI+2ID}{IK}=\dfrac{2(GI+ID)}{AG}=\dfrac{2GD}

{AG}=\dfrac{2GD}{2GD}=1$
 
Top Bottom