giúp em bài này với

F

foreverloveya123

Có:
[TEX]\frac{100}{n(100-n)}=\frac{(100-n)+n}{(100-n)n}=\frac{1}{n}+\frac{n}{100-n}[/TEX]
\Rightarrow[TEX]100(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1})=\frac{1}{1}+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+...+\frac{1}{99}+\frac{1}{1}=2(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})[/TEX]
\Rightarrow[TEX]\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}=\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{50}[/TEX]
thay vào, có
[TEX]A=\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{50}}=50[/TEX]
 
Top Bottom