Giup em bai nay voi.kho qua.

A

asroma11235

[tex](x^2+y^2) -(x^3+y^3) \geq (x^2+y^2) -(x^3+y^3)+(x^3-y^3+y^4-x^2)=(y-y^2)^2 \geq0[/tex]
[tex](x+y^2)-(x^2+y^3) \geq (x+y^2)-(x^2+y^3)+(x^3-y^3+y^4-x^2) =(\sqrt{x}-\sqrt{x^3})^2+(y-y^2)^2 \geq 0[/tex]
[tex](x+y)-(x^2+y^2) \geq (x+y)-(x^2+y^2)-(x+y^2-x^2-y^3) =y(y-1)^2 \geq 0[/tex]
[tex]2-(x+y) \geq 2-(x+y)-(x+y-x^2-y^2) =(x-1)^2+(y-1)^2 \geq 0[/tex]
____________________________________
_________________________
________________________________________________
 
Top Bottom