giới hạn của hàm số

S

sam_chuoi

Tự hiểu là x->0 nhé

Lim(1-cos2xcos4x)/2x =lim(1- 1/2cos2x-1/2cos6x)/2x=lim[(1-cos2x)/4x+(1-cos6x)/4x]=lim[(2sin^2x)/4x+(1+3cos2x-4cos^32x)/4x]=lim[(xsin^2x)/2x^2+(1-cos2x)(1+4cos2x+4cos^22x)/4x]=lim(x/2+2sin^2x(2cos2x+1)^2/4x)=lim(x/2+x(2cos2x+1)^2/2)=0.
 
C

conga222222

tìm : lim (1-cos2x.cos4x)/2x
x->0

cho:
lim sinx/x =1
x-->0
[/LEFT]

cận: x-->0
\[\begin{array}{l}
\lim \left( {\frac{{1 - \cos 2x\cos 4x}}{{2x}}} \right) = \lim \left( {\frac{{1 - \cos 2x\left( {1 - 2{{\sin }^2}2x} \right)}}{{2x}}} \right)\\
= \lim \left( {\frac{{{{\sin }^2}x}}{x} + \frac{{\sin 4x\sin 2x}}{{2x}}} \right)\\
ma:\\
\lim \left( {\frac{{\sin x}}{x}} \right) = 1\\
\lim \left( {\frac{{\sin 2x}}{{2x}}} \right) = 1\\
\lim \left( {\sin x} \right) = 0\\
\lim \left( {\sin 4x} \right) = 0\\
\to \lim = 0
\end{array}\]
 
Top Bottom