Xét: [tex]f'(2-x^3)=1\Leftrightarrow \left[\begin{array}{l} x=-2\\x=0\\x=1\\x=2\end{array}\right.[/tex]
Có: $g'(x)=f'(x)-1$
$g'(x)=0 \Leftrightarrow f'(x)=1$
Đặt $x=2-t^3$ có: $f'(2-t^3)=1 \Leftrightarrow \left[\begin{array}{l} t=-2\\t=0\\t=1\\t=2\end{array}\right. \Leftrightarrow \left[\begin{array}{l} x=10\\x=2\\x=1\\x=-6\end{array}\right.$
Bảng xét dấu:
$
\begin{array}{c|ccccccccccc}
x & -\infty & & -6 & & 1 & & 2 & & 10 & & +\infty \\
\hline
g'(x) & & + & 0 & - & 0 & + & 0 & - & 0 & + \\
\end{array}
$