fancfc said:
giai pt
a/ x^4+5x^3-12x^2+5x+1=0
b/ (x^2-x+1)^4+5x^4=6x^2.(x^2-x+1)^2
a,
[tex] x^4+5x^3-12x^2+5x+1=0 \\ \Leftrightarrow \ (x-1)(x^3+6x^2-6x-1)=0 \\ \Leftrightarrow \ (x-1)(x-1)(x^2+7x+10)=0 \\ \Leftrightarrow \ \lef[\begin{x=1}\\{x=5}\\{x=2}[/tex]
b,
[tex](x^2-x+1)^4+5x^4=6x^2(x^2-x+1)^2 \\ \Leftrightarrow \ (x^2-x+1)^4-x^2(x^2-x+1)^2+5x^4-5x^2(x^2-x+1)^2=0\\ \Leftrightarrow \ (x^2-x+1)^2[(x^2-x+1)^2-x^2]+5x^2[x^2-(x^2-x+1)^2]=0 \\ \Leftrightarrow \ [(x^2-x+1)^2-x^2][(x^2-x+1)^2-5x^2]=0 \\ \Leftrightarrow \ \lef[\begin{(x^2-x+1)^2=x^2}\\{(x^2-x+1)^2=5x^2}[/tex]
[tex] \Leftrightarrow \ \lef[\begin{x^2-x+1=x}\\{x^2-x+1=-x}\\{x^2-x+1=\sqrt5x}\\{x^2-x+1=-\sqrt5x}[/tex]
tới đây bạn giải tiếp nha