A
ankhang1997


Giải phương trình lượng giác
$a)1+ \cos^2 x+ 2\cos x.\cos^2 5x= \sin^2 5x$
$b)\sin(\pi \sqrt{8-{x}^{2}})=\dfrac{1}{2}$
$c)\dfrac{4\sin x-3}{\sqrt{7}\sin x+3\cos x}=1$
$d)\sin(x+\sin x)+\cos(x+\cos x)=0$
$a)1+ \cos^2 x+ 2\cos x.\cos^2 5x= \sin^2 5x$
$b)\sin(\pi \sqrt{8-{x}^{2}})=\dfrac{1}{2}$
$c)\dfrac{4\sin x-3}{\sqrt{7}\sin x+3\cos x}=1$
$d)\sin(x+\sin x)+\cos(x+\cos x)=0$
Last edited by a moderator: