Toán 10 giải pt

Bùi Tấn Phát

Học sinh chăm học
Thành viên
4 Tháng mười một 2021
126
267
51
21
An Giang
Câu 44: Đây là phương pháp nhân lượng liên hợp nha

TXĐ: $D=[-\dfrac{1}{2};\dfrac{3}{2}]$

$4x^2+(2x-5)\sqrt{4x+2}+17=4x+(2x+3)\sqrt{6-4x}$

$\Leftrightarrow4x^2+(2x-5)(\sqrt{4x+2}-x-\dfrac{3}{2})+(2x-5)(x+\dfrac{3}{2})+17=4x+(2x+3)(\sqrt{6x-4}+x-\dfrac{5}{2})+(2x+3)(\dfrac{5}{2}-x)$

$\Leftrightarrow8x^2-8x+2+(2x-5).\dfrac{(4x+2)-(x+\dfrac{3}{2})^2}{\sqrt{4x+2}+x+\dfrac{3}{2}}-(2x+3).\dfrac{(6x-4)-(x-\dfrac{5}{2})^2}{\sqrt{6x-4}-x+\dfrac{5}{2}}=0$

$\Leftrightarrow8(x-\dfrac{1}{2})^2+(2x-5).\dfrac{-(x-\dfrac{1}{2})^2}{\sqrt{4x+2}+x+\dfrac{3}{2}}-(2x+3).\dfrac{-(x-\dfrac{1}{2})^2}{\sqrt{6x-4}-x+\dfrac{5}{2}}=0$

$\Leftrightarrow(x-\dfrac{1}{2})^2.\left[8+\dfrac{5-2x}{\sqrt{4x+2}+x+\dfrac{3}{2}}+\dfrac{2x+3}{\sqrt{6x-4}-x+\dfrac{5}{2}}\right]=0$

$\Leftrightarrow\left[\begin{matrix}
x=\dfrac{1}{2}\\
8+\dfrac{5-2x}{\sqrt{4x+2}+x+\dfrac{3}{2}}+\dfrac{2x+3}{\sqrt{6x-4}-x+\dfrac{5}{2}}=0\end{matrix}\right.$

Với mọi $x\in D$ ta được

$\dfrac{5-2x}{\sqrt{4x+2}+x+\dfrac{3}{2}}>0$

$\dfrac{2x+3}{\sqrt{6x-4}-x+\dfrac{5}{2}}>0$

Do đó $8+\dfrac{5-2x}{\sqrt{4x+2}+x+\dfrac{3}{2}}+\dfrac{2x+3}{\sqrt{6x-4}-x+\dfrac{5}{2}}>0$

Suy ra $8+\dfrac{5-2x}{\sqrt{4x+2}+x+\dfrac{3}{2}}+\dfrac{2x+3}{\sqrt{6x-4}-x+\dfrac{5}{2}}=0$ vô nghiệm

Vậy phương trình đã cho có nghiệm kép $x=\dfrac{1}{2}$
 
Top Bottom