2c. Ta có: [tex](x+1)\sqrt{x^2-2x+3}=x^2+1\Leftrightarrow x\sqrt{x^2-2x+3}-2x+\sqrt{x^2-2x+3}-2-(x^2-2x-1)=0\Leftrightarrow (\sqrt{x^2-2x+3}-2)(x+1)-(x^2-2x-1)=0\Leftrightarrow \frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}-(x^2-2x-1)=0\Leftrightarrow (x^2-2x-1)(\frac{1}{\sqrt{x^2-2x+3}+2}-1)=0[/tex]
[tex]\Leftrightarrow x^2-2x-1=0[/tex] hoặc [tex]\frac{1}{\sqrt{x^2-2x+3}+2}-1=0[/tex]
Với [tex]x^2-2x-1=0\Leftrightarrow x=1\pm \sqrt{2}[/tex]
Với [tex]\frac{1}{\sqrt{x^2-2x+3}+2}-1=0[/tex] [tex]\Leftrightarrow \frac{1}{\sqrt{x^2-2x+3}+2}-1=0\Leftrightarrow \sqrt{x^2-2x+3}+2=1\Leftrightarrow \sqrt{x^2-2x+3}=-1[/tex](vn)
Vậy: S={[tex]1\pm \sqrt{2}[/tex]}