1) ĐK: [tex]x\neq k\pi[/tex]
[tex]\Leftrightarrow 3cos^2x+2\sqrt{2}sin^4x=(2+3\sqrt{2})sin^2x.cosx\Leftrightarrow \left ( 3cos^2x-3\sqrt{2}sin^2x.cosx \right )-\left ( 2sin^2x.cosx-2\sqrt{2} sin^4x\right )=0\Leftrightarrow 3cosx\left ( cosx-\sqrt{2}sin^2x \right )-2sin^2x\left ( cosx-\sqrt{2}sin^2x \right )=0\Leftrightarrow \left ( cosx-\sqrt{2}sin^2x \right )\left ( 3cosx-2sin^2x \right )=0[/tex]
2) ĐK: [tex]x\neq k\pi[/tex]
[tex]t=sin^2x+\frac{1}{sin^2x}\Rightarrow t\geq 2\Rightarrow pt\Leftrightarrow 4t^2+4t-35=0\Leftrightarrow t=\frac{5}{2}[/tex]
3) ĐK: [tex]x\neq k\frac{\pi }{2}[/tex]
[tex]pt\Leftrightarrow 8(sin^4x+cos^4x)=20cos2x-5\Leftrightarrow 4cos^22x-20cos2x+9=0\Leftrightarrow cos2x=\frac{1}{2}[/tex]
4) ĐK: [tex]x\neq \frac{\pi }{6}+k\frac{\pi }{3}[/tex]
[tex]pt\Leftrightarrow cosx.sin3x=sin5x.cos3x\Leftrightarrow sin4x=sin8x[/tex]
5) ĐK: [tex]x\neq \frac{\pi }{2}+k\pi[/tex]
Đặt t=tanx[tex]\Rightarrow sin2x=\frac{2t}{1+t^2}[/tex]
Thay vào giải tìm t