b, x + y+ z+8 = 2*căn(x - 1) +4*căn(y -2) +6*căn(z -3)
[tex]x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}[/tex]
ĐKXĐ: [tex]x\geq 1;y\geq 2;z\geq 3[/tex]
[tex]\Leftrightarrow (x-1)-2\sqrt{x-1}+1+(y-2)-4\sqrt{y-2}+4+(z-3)-6\sqrt{z-3}+9=0[/tex]
[tex]\Leftrightarrow (\sqrt{x-1}-1)^{2}+(\sqrt{y-2}-2)^{2}+(\sqrt{z-3}-3)^{2}=0[/tex]
Mà [tex]\Leftrightarrow (\sqrt{x-1}-1)^{2}+(\sqrt{y-2}-2)^{2}+(\sqrt{z-3}-3)^{2}/geq 0[/tex] với mọi x,y,z
[tex]\Rightarrow \left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{y-2}-2=0 \\ \sqrt{z-3}-3=0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=2\\ y=6 \\ z=12 \end{matrix}\right.[/tex] (T/m ĐKXĐ)
Vậy....
3,tìm Min
P = x - 2*căn(2x -3)
[tex]P=x-2\sqrt{2x-3}\geq x-\frac{2x-3+1}{2}=1[/tex] (áp dụng BĐT cauchy cho [tex]2\sqrt{2x-3}[/tex] )
dấu "=" xảy ra <=> 2x-3=1 <=> x=2
Vậy...
2,CMR:
x* căn(y -1) + y*căn(x -1) ,<= x*y
ĐKXĐ: [tex]x\geq 1;y\geq 1[/tex]
Áp dụng BĐT Cauchy ta có:
[tex]x.\sqrt{y-1}+y.\sqrt{x-1}\leq x.\frac{y-1+1}{2}+y.\frac{x-1+1}{2}=x.\frac{y}{2}+y.\frac{x}{2}=xy[/tex] (đpcm)
Dấu "=" xảy ra <=. x=y=2