Giải PT: $tan^2x = \dfrac{1 - cos^3x}{1 - sin^3x}$

E

eye_smile

ĐKXĐ:...

PT \Leftrightarrow $\dfrac{1-cos^2x}{1-sin^2x}=\dfrac{1-cos^3x}{1-sin^3x}$

\Leftrightarrow $cosx=1$ hoặc $\dfrac{1+cosx}{1+sinx}=\dfrac{1+cos^2x+cosx}{1+sin^2x+sinx}$ (1)

PT(1) \Leftrightarrow $(1+cosx)(1+sin^2x+sinx)=(1+sinx)(1+cos^2x+cosx)$

\Leftrightarrow $sin^2x+cosx.sin^2x=cos^2x+sinx.cos^2x$

\Leftrightarrow $(sinx-cosx)(sinx+cosx+sinx.cosx)=0$

\Leftrightarrow ....
 
Top Bottom