Giải pt: $\sin ^4 x + \cos ^4 \left( x + \dfrac{\pi}{4} \right) = \dfrac{1}{4}$

N

nguyenbahiep1

[laTEX]\frac{(1-cos2x)^2}{4} + \frac{[1+cos(2x+ \frac{\pi}{2})]^2}{4} = \frac{1}{4} \\ \\ (1-cos2x)^2 + (1-sin2x)^2 = 1 \\ \\ 2 - 2cos2x-2sin2x + 1 = 1 \\ \\ cos2x + sin2x = 1 \Rightarrow cos(2x - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}[/laTEX]
 
Top Bottom