1.
[tex]cosx+cos2x=sinx+sin2x\\\Leftrightarrow sinx-cosx=cos2x-sin2x\\\Leftrightarrow \frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx=\frac{\sqrt{2}}{2}cos2x-\frac{\sqrt{2}}{2}sin2x\\\Leftrightarrow sin(x-\frac{\pi}{4})=sin(\frac{\pi}{4}-2x)\\\Leftrightarrow ...[/tex]
2.
$DK:...$
[tex]\cot x + \sin x\left( {1 + \tan x.\tan \dfrac{x}{2}} \right) = 4\\ \Leftrightarrow \cot x + \sin x\left( {1 + \dfrac{{\sin x.\sin \dfrac{x}{2}}}{{\cos x.\cos \dfrac{x}{2}}}} \right) = 4\\ \Leftrightarrow \cot x + \sin x.\dfrac{{\cos x.\cos \dfrac{x}{2} + \sin x.\sin \dfrac{x}{2}}}{{\cos x.\cos \dfrac{x}{2}}} = 4\\ \Leftrightarrow \cot x + \sin x.\dfrac{{\cos \left( {x - \dfrac{x}{2}} \right)}}{{\cos x.\cos \dfrac{x}{2}}} = 4\\ \Leftrightarrow \cot x + \sin x.\dfrac{{\cos \dfrac{x}{2}}}{{\cos x.\cos \dfrac{x}{2}}} = 4\\ \Leftrightarrow \cot x + \dfrac{{\sin x}}{{\cos x}} = 4\\ \Leftrightarrow \dfrac{1}{{\tan x}} + \tan x = 4\\ \Leftrightarrow {\tan ^2}x - 4\tan x + 1 = 0\\ \Leftrightarrow ...[/tex]
3.
$DK:....$
[tex]2\sqrt{2}cos(x+\frac{\pi }{4})+\frac{1}{sinx}=\frac{1}{cosx}\\\Leftrightarrow 2\sqrt{2}(cosx.\frac{\sqrt{2}}{2}-sinx.\frac{\sqrt{2}}{2})+\frac{cosx-sinx}{cosxsinx}=0\\\Leftrightarrow 2(cosx-sinx)+\frac{cosx-sinx}{cosxsinx}=0\\\Leftrightarrow (cosx-sinx)(2+\frac{1}{sinxcosx})=0\\\Leftrightarrow (cosx-sinx).\frac{sin2x+1}{sinxcosx}=0\\\Leftrightarrow ...[/tex]