Giải pt lượng giác

D

demon311

Bài dễ xào trước:
3)

$\sin \dfrac{ x}{2}.\sin x-\cos \dfrac{ x}{2}. \sin^2 x=2\cos^2 (\dfrac{ \pi}{4}-\dfrac{ x}{2})-1 \\
\leftrightarrow \sin \dfrac{ x}{2}.\sin x-\cos \dfrac{ x}{2}. \sin^2 x=\sin x \\
\leftrightarrow \sin x(\sin \dfrac{ x}{2}-2\cos^2 \dfrac{ x}{2}.\sin \dfrac{ x}{2} -1)=0 \\
\leftrightarrow \left[ \begin{array}{ll}
\sin x= 0 \\
\sin \dfrac{ x}{2}-2\cos^2 \dfrac{ x}{2}.\sin \dfrac{ x}{2}-1=0
\end{array} \right.
\leftrightarrow \left[ \begin{array}{ll}
x=k\pi \\
\sin \dfrac{ x}{2}.\cos x = -1
\end{array} \right. \leftrightarrow
\left[ \begin{array}{ll}
x=k\pi \\
\begin{cases}
\sin \dfrac{ x}{2}=1 \\
\cos x =-1
\end{cases} \\
\begin{cases}
\sin \dfrac{ x}{2}=-1 \\
\cos x =1
\end{cases}
\end{array} \right. \\
\leftrightarrow
x=k\pi $
 
M

mua_sao_bang_98

2. $\frac{cos^2x(cosx-1)}{sinx+cosx}=2(1+sinx)$

Đk: $sinx+cosx \neq 0$ \Leftrightarrow $sin(\frac{\pi}{4}+x)\neq 0$ \Leftrightarrow $x\neq -\frac{\pi}{4}+k\pi$

pt \Leftrightarrow $(cosx-1)(1-sinx)(1+sinx)=2(1+sinx)(sinx+cosx)$

\Leftrightarrow $(1+sinx)(cosx-cosxsinx-1+sinx-2sinx-2cosx)=0$

\Leftrightarrow $(1+sinx)(sinx+cosx+sinxcosx+1)=0$

\Leftrightarrow $(1+sinx)^2(1+cosx)=0$

\Leftrightarrow $\left[\begin{matrix}sinx=-1 \\ cosx=-1 \end{matrix}\right.$

\Leftrightarrow $\left[\begin{matrix}x=\frac{-\pi}{2}+k2\pi \\ x=\pi +k2\pi \end{matrix}\right.$
 
D

demon311

2)

$\cos^3 x -\cos ^2 x=2\sin^2 x+2\sin x \cos x+ 2 \sin x +2 \cos x \\
\leftrightarrow \cos^3 x +\cos ^2 x=2+2\sin x +2\cos x +2 \sin x \cos x \\
\leftrightarrow \cos^2 x (\cos x+1)=2(\sin x+1)(\cos x+1) \\
\leftrightarrow (\cos x+1)(\cos^2 x-2\sin x-2)=0 \\
\leftrightarrow
\left[ \begin{array}{ll}
\cos x+1=0 \\
\cos^2 x -2\sin x-2=0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos x=-1 \\
-\sin^2 x -2\sin x-1=0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos x=-1 \\
\sin x=-1
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
x=\pi+k2\pi \\
x=\dfrac{ 3\pi}{2}+k2\pi
\end{array} \right. $
 
Last edited by a moderator:
M

mua_sao_bang_98

2)

$\cos^3 x -\cos ^2 x=2\sin^2 x+2\sin x \cos x+ 2 \sin x +2 \cos x \\
\leftrightarrow \cos^3 x +\cos ^2 x=2+2\sin x +2\cos x +2 \sin x \cos x \\
\leftrightarrow \cos^2 x (\cos x+1)=2(\sin x+1)(\cos x+1) \\
\leftrightarrow (\cos x+1)(\cos^2 x-2\sin x-2)=0 \\
\leftrightarrow
\left[ \begin{array}{ll}
\cos x+1=0 \\
\cos^2 x -2\sin x-2=0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos x=-1 \\
-\sin^2 x -2\sin x-1=0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos x=-1 \\
\sin x=-1
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
x=\pi+k2\pi \\
x=\dfrac{ 3\pi}{2}+k2\pi
\end{array} \right. $

sinx=-1 có trong cái chỗ đặc biệt mà nhỉ? .
 
A

ankhang1997

1) phương trình tương đương với:
\[\begin{array}{l}
{(1 + \cos 2x)^2} - \cos 2x - \frac{1}{2}\cos 4x + \cos \frac{{3x}}{4} = \frac{7}{2}\\
1 + 2\cos 2x + {\cos ^2}2x - \cos 2x - \frac{1}{2}(2{\cos ^2}2x - 1) + \cos \frac{{3x}}{4} = \frac{7}{2}\\
\cos 2x + \cos \frac{{3x}}{4} = 2
\end{array}\]
vì \[\begin{array}{l}
\left| {\cos 2x} \right| \le 1\\
\left| {\cos \frac{{3x}}{4}} \right| \le 1
\end{array}\]
nên \[\left| {\cos 2x} \right| + \left| {\cos \frac{{3x}}{4}} \right| \le 2\]
vậy \[\left\{ \begin{array}{l}
\cos 2x = 1\\
\cos \frac{{3x}}{4} = 1
\end{array} \right.\]
sau đó giao 2 nghiệm là xong


không mún cách này còn cách khác:
\[\begin{array}{l}
{(1 + \cos 2x)^2} - \cos 2x - \frac{1}{2}\cos 4x + \cos \frac{{3x}}{4} = \frac{7}{2}\\
1 + 2\cos 2x + {\cos ^2}2x - \cos 2x - \frac{1}{2}(2{\cos ^2}2x - 1) + \cos \frac{{3x}}{4} = \frac{7}{2}\\
\cos 2x + \cos \frac{{3x}}{4} = 2\\
2 - \cos 2x - \cos \frac{{3x}}{4} = 0\\
1 - \cos 2x + 1 - \cos \frac{{3x}}{4} = 0\\
2{\sin ^2}x + 2{\sin ^2}\frac{{3x}}{8} = 0\\
\left\{ \begin{array}{l}
\sin x = 0\\
\sin \frac{{3x}}{8} = 0
\end{array} \right.
\end{array}\]
giao 2 nghiệm là xong
 
Last edited by a moderator:
Top Bottom