Nhờ mn giải giùm mk bài này với ạ !!!
[tex]a) \sqrt{3}(sin2x+sinx)+ cos2x - cosx = 2
b) 3sin(x-\frac{\pi }{3}) +4sin(x+\frac{\pi}{6})+ 5sin(x+\frac{\pi }{3})=0[/tex]
a, pt <=> [tex](\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x) + (\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx)=1[/tex]
<=> [tex]sin(2x+\frac{\pi }{6}) + sin(x-\frac{\pi }{6}) = 1[/tex]
<=> [tex]cos(\frac{\pi }{2}-2x-\frac{\pi }{6}) + sin(x-\frac{\pi }{6}) = 1[/tex]
<=> [tex]cos(2x-\frac{\pi }{3}) + sin(x-\frac{\pi }{6}) = 1[/tex]
Đặt [tex]x-\frac{\pi }{6}[/tex] = t
pt trở thành: cos2t + sint = 1 <=> [tex]1 - 2sin^{2}t[/tex] + sint = 1
=> sin t = 0 hoặc sin t = 1/2 -> sin [tex]x-\frac{\pi }{6}[/tex] = 0 hoặc sin [tex]x-\frac{\pi }{6}[/tex] = 1/2
-> x
b, pt <=> - [tex]\frac{3}{5}cos(x+\frac{\pi }{6}) + \frac{4}{5}sin(x+\frac{\pi }{6}) + sin(x+\frac{\pi }{3})[/tex] = 0
<=> [tex]sin (x+\frac{\pi }{6}-\alpha )[/tex] + [tex]sin(x+\frac{\pi }{3})[/tex] = 0 (với [tex]cos\alpha= \frac{4}{5}[/tex])
<=> [tex]sin (x+\frac{\pi }{6}-\alpha )[/tex] - [tex]sin(x-\frac{2\pi }{3})[/tex] = 0
<=> [tex]sin (x+\frac{\pi }{6}-\alpha )[/tex] = [tex]sin(x-\frac{2\pi }{3})[/tex]
=> .......