Giải pt-hpt-bpt

P

pro_sadboy

Last edited by a moderator:
N

ngomaithuy93

Giải phương trình:
[TEX]a/ 2x+1+x\sqrt{x^2+2}+(x+1)sqrt{x^2+2x+3}=0[/TEX]
[TEX]pt \Leftrightarrow x+x\sqrt{x^2+2}=[(-x-1)+(-x-1)\sqrt{(-x-1)^2+2}] (1)[/TEX]
Xét [TEX]f(t)=t+t\sqrt{t^2+2}[/TEX]
[TEX] f'(t)=\frac{2t^2+2+\sqrt{t^2+2}}{\sqrt{t^2+2}} > 0 \forall t[/TEX]
\Rightarrow f(t)đb.
[TEX] (1) \Leftrightarrow f(x)= f(-x-1) \Leftrightarrow x=-x-1) \Leftrightarrow x=\frac{-1}{2}[/TEX]
 
H

hieudieucay

giải hệ pt
latex.php

xét hàm số
eq.latex
\Rightarrowhàm số f(t)đồng biến \forallt
không giảm tổng quát giả sử
eq.latex

eq.latex

eq.latex

do f(t) đồng biến\forallt\Rightarrow
eq.latex

thay vào pt\Rightarrow
eq.latex
 
K

kimxakiem2507

[TEX]\left{{x+3=y+\sqrt{y^2+1}}\\{y+3=z+\sqrt{z^2+1}}\\{z+3=x+\sqrt{x^2+1}}[/TEX]
[TEX]f(t)=t+\sqrt{t^2+1}\Rightarrow{f^'(t)=1+\frac{t}{\sqrt{t^2+1}}=\frac{\sqrt{t^2+1}+t}{\sqrt{t^2+1}}>0\ \ \ \forall{t\Rightarrow{f(t) :db\ \ (1)[/TEX]
[TEX]x\le{y\le{z\Rightarrow{f(x)\le{f(y)\le{f(z)\ \ \ (2)[/TEX]
[TEX]hpt\Rightarrow{f(y)\le{f(z)\le{f(x) \ \ \ (3)[/TEX]
[TEX](1)(2)(3)\Rightarrow{x=y=z[/TEX]
 
K

kimxakiem2507

[TEX]b/2x^3+x^2-3x+1 \geq (6x-2)sqrt{3x-1}[/TEX]
[TEX]bpt\Leftrightarrow{2x^3+x^2\ge{2(3x-1)sqrt{3x-1}+3x-1[/TEX]
[TEX]f(t)=2t^3+t^2\ \ \Rightarrow{f^'(t)=6t^2+2t\ge0\ \ \ \forall{t\ge0\Rightarrow{f(t):db\ \ \ (1)[/TEX]
[TEX]bpt\Leftrightarrow{f(x)\ge{f(sqrt{3x-1})(2)[/TEX]
[TEX](1)(2)\Rightarrow{bpt\Leftrightarrow{x\ge{sqrt{3x-1}}\ \ \ .....[/TEX]
 
Top Bottom