[TEX] 1:sinx+cos^4x=\frac{7}{8cot(x+ \frac {\pi} {3}) cot( \frac{\pi} {6}-x)}[/TEX]
ta thấy [TEX]\frac{\pi} {6}-x+(x+ \frac {\pi} {3}=\frac {\pi} {2}[/TEX]
[TEX](1)<=>sinx+cos^4x=\frac{7}{8cot(x+ \frac {\pi} {3}) tan( \frac{\pi} {3}+x)}[/TEX]
[TEX]<=>sinx+cos^4x=\frac{7}{8}[/TEX]
[TEX] 2: [(sin2x)^4+(cos2x)^4].\frac {1}{[tan( \frac {\pi} {4}-x) tan( \frac{\pi} {4}+x]}=(cos4x)^4[/TEX]
[TEX] \frac {\pi} {4}-x+ \frac {\pi} {4}+x= \frac {\pi} {2}[/TEX]
[TEX]=> tan( \frac {\pi} {4}-x) tan( \frac{\pi} {4}+x)=tan( \frac {\pi} {4}-x).cot( \frac {\pi} {4}-x)=1[/TEX]
[TEX](2)<=>(sin2x)^4+(cos2x)^4=(cos4x)^4[/TEX]
[TEX]<=>(\frac{1-cos4x}{2})^2+(\frac{1+cos4x}{2})^2=(cos4x)^4[/TEX]
[TEX]<=>1+(cos4x)^2=2(cos4x)^4[/TEX]