$a)|2x-2|+|3x-1|=|5x-3|\\Áp \ dụng \ công \ thức:|x|+|y|\geq |x+y|\\\Rightarrow |2x-2|+|3x-1|\geq |2x-2+3x-1|=|5x-3|\\Dấu\ bằng \ xảy \ ra\Leftrightarrow (2x-2)(3x-1)\geq 0\Leftrightarrow (x-1)(3x-1)\geq 0$
Vậy $\left[\begin{array}{11}x\leq \dfrac{1}{3}\\x\geq 1\end{array}\right.$
$b)|9-2x|=|3x-4|+|x+5|\\Áp\ dụng \ |A|=|-A|\\\Rightarrow |3x-4|=|4-3x|\\Áp \ dụng \ |x|+|y|\geq |x+y|\\\Rightarrow |4-3x|+|x+5|\geq |4-3x+x+5|=|9-2x|\\Dấu\ "=" \ xảy \ ra\Leftrightarrow (4-3x)(x+5)\geq 0$
LBXD:
Vậy $-5\leq x\leq \dfrac{4}{3}$
$c)|x+1|=|x(x+1)|\\TH_{1}:x+1=x(x+1)\\\Leftrightarrow x+1=x^{2}+x\\\Leftrightarrow x^{2}=1\\\Leftrightarrow x\in \left \{ -1;1 \right \}\\TH_{2}:x+1=-x(x+1)\\\Leftrightarrow x+1=-x^{2}-x\\\Leftrightarrow x^{2}+2x+1=0\\\Leftrightarrow (x+1)^{2}=0\\\Leftrightarrow x=-1\\Vậy...$
$d)|x^{2}-3x+3|=3x-x^{2}-1\\TH_{1}:x^{2}-3x+3=3x-x^{2}-1\\\Leftrightarrow 2x^{2}-6x+4=0\\\Leftrightarrow x^{2}-3x+2=0\\\Leftrightarrow (x-1)(x-2)=0\\\Leftrightarrow x=1;x=2\\TH_{2}:-x^{2}+3x-3=3x-x^{2}-1\\\Leftrightarrow -3=-1(vô \ lí)\\Vậy...$
e)$|x+1|-|x|+3|x-1|-2|x-2|=x+2$
LBXK:
*Xét $x< -1$:
$-(x+1)+x-3(x-1)+2(x-2)=x+2$
$\Leftrightarrow -x-1+x-3x+3+2x-4=x+2$
$\Leftrightarrow -2x=4$
$\Leftrightarrow x=-2(TM)$
*Xét $-1\leq x<0$:
$x+1+x-3(x-1)+2(x-2)=x+2$
$\Leftrightarrow x+1+x-3x+3+2x-4=x+2$
$\Leftrightarrow 0x=2(loại)$
*Xét [tex]0\leq x<1[/tex]
$x+1-x-3(x-1)+2(x-2)=x+2$
$\Leftrightarrow x+1-x-3x+3+2x-4=x+2$
$\Leftrightarrow -2x=2$
$\Leftrightarrow x=-1(KTM)$
*Xét[tex]1\leq x\leq 2[/tex]
$x+1-x+3(x-1)+2(x-2)=x+2$
$\Leftrightarrow x+1-x+3x-3+2x-4=x+2$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2(TM)$
*Xét $x>2$:
$x+1-x+3(x-1)-2(x-2)=x+2$
$\Leftrightarrow x+1-x+3x-3-2x+4=x+2$
$\Leftrightarrow 0x=0$
=> Nghiệm tùy ý trong khoảng đang xét => $x>2$
Vậy $\left[\begin{array}{11}x=-2\\x\geq 2\end{array}\right.$
Câu f) tương tự câu e) thôi bạn