Câu 63 tham khảo nha <333
$(4x+1)\sqrt{x+2}-(4x-1)\sqrt{x-2}=21\qquad(*)$
TXĐ: $D=\left[2;+\infty\right)$
Đặt $u=\sqrt{x+2}$, $\qquad v=\sqrt{x-2}$, $\qquad(u>v\ge0)$
$\Rightarrow x=u^2-2=v^2+2$ ,$\qquad u^2-v^2=4$
$(*)\Leftrightarrow\left[4(v^2+2)+1)\right]u-\left[4(u^2-2)-1\right]v=21$
$\Leftrightarrow4uv^2+9u-4u^2v+9v=21$
$\Leftrightarrow4uv(v-u)+9(u+v)=21$
$\Leftrightarrow4uv(v^2-u^2)+9(u+v)^2=21(u+v)$
$\Leftrightarrow-16uv+9(u+v)^2=21(u+v)\qquad (**)$
Đặt $S=u+v$, $\quad P=uv$ $\qquad(S\ge 4P; \quad S,P\ge0)$
Ta có $(u+v)^2=(u-v)^2+4uv$
$\Leftrightarrow(u+v)^4=(u^2-v^2)^2+4uv(u+v)$
$\Leftrightarrow (u+v)^4=16+4uv(u+v)\qquad(***)$
$(**),(***)\Leftrightarrow\left\{\begin{matrix}
9S^2-21S-16P=0\\
S^4-4SP-16=0\end{matrix}\right.$
$\Leftrightarrow\left\{\begin{matrix}
P=\dfrac{9S^2-21S}{16}\\
S^4-4S\dfrac{9S^2-21S}{16}-16=0\end{matrix}\right.$
$\Leftrightarrow\left\{\begin{matrix}
P=\dfrac{9S^2-21S}{16}\\
\dfrac{-5}{4}S^4+\dfrac{21}{4}S^3-16=0\\
9S^2-21S\ge0\end{matrix}\right.$
$\Leftrightarrow\left\{\begin{matrix}
P=\dfrac{9S^2-21S}{16}\\
5S^4-21S^3+64=0\\
S\ge\dfrac{7}{3}\end{matrix}\right.$
$\Leftrightarrow\left\{\begin{matrix}
P=\dfrac{9S^2-21S}{16}\\
S\ge\dfrac{7}{3}\\
\left[\begin{matrix}
S=4&\text{(nhận)}\\
S\approx1,73&\text{(loại)}\end{matrix}\right.\end{matrix}\right.$
$\Leftrightarrow\left\{\begin{matrix}
S=4\\
P=\dfrac{15}{4}&\text{(nhận)}
\end{matrix}\right.$
Xét phương trình $X^2-SX+P=0$
$\Leftrightarrow X^2-4X+\dfrac{15}{4}=0$
$\Leftrightarrow\left[\begin{matrix}
X=\dfrac{5}{2}\\
X=\dfrac{3}{2}\end{matrix}\right.$
Ta có $u, v$ lầ 2 nghiệm của phương trình $X^2-SX+P=0$
Mà $u>v$ nên $u=\dfrac{5}{2}$, $v=\dfrac{3}{2}$
Suy ra $\sqrt{x+2}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{17}{4}$, (nhận)
Vậy phương trình có nghiệm $x=\dfrac{17}{4}$