JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
x + 1 2013 + x + 2 2012 = x + 3 2011 + x + 4 2010 ⇔ x + 1 2013 + 1 + x + 2 2012 + 1 = x + 3 2011 + 1 + x + 4 2010 + 1 ⇔ x + 2014 2013 + x + 2014 2012 = x + 2014 2011 + x + 2014 2010 ⇔ ( x + 2014 ) ( 1 2013 + 1 2012 − 1 2011 − 1 2010 ) = 0 ⇒ x = − 2014 \frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\Leftrightarrow \frac{x+1}{2013}+1+\frac{x+2}{2012}+1=\frac{x+3}{2011}+1+\frac{x+4}{2010}+1\Leftrightarrow \frac{x+2014}{2013}+\frac{x+2014}{2012}=\frac{x+2014}{2011}+\frac{x+2014}{2010}\Leftrightarrow (x+2014)(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010})=0\Rightarrow x=-2014 2 0 1 3 x + 1 + 2 0 1 2 x + 2 = 2 0 1 1 x + 3 + 2 0 1 0 x + 4 ⇔ 2 0 1 3 x + 1 + 1 + 2 0 1 2 x + 2 + 1 = 2 0 1 1 x + 3 + 1 + 2 0 1 0 x + 4 + 1 ⇔ 2 0 1 3 x + 2 0 1 4 + 2 0 1 2 x + 2 0 1 4 = 2 0 1 1 x + 2 0 1 4 + 2 0 1 0 x + 2 0 1 4 ⇔ ( x + 2 0 1 4 ) ( 2 0 1 3 1 + 2 0 1 2 1 − 2 0 1 1 1 − 2 0 1 0 1 ) = 0 ⇒ x = − 2 0 1 4
x + 1 2013 + x + 2 2012 = x + 3 2011 + x + 4 2010 \frac{x+1}{2013} + \frac{x+2}{2012} = \frac{x+3}{2011} + \frac{x+4}{2010} 2 0 1 3 x + 1 + 2 0 1 2 x + 2 = 2 0 1 1 x + 3 + 2 0 1 0 x + 4
<=>
( x + 1 2013 + 1 ) + ( x + 2 2012 + 1 ) = ( x + 3 2011 + 1 ) + ( x + 4 2010 + 1 ) (\frac{x+1}{2013}+1) + (\frac{x+2}{2012}+1) = (\frac{x+3}{2011}+1) + (\frac{x+4}{2010}+1) ( 2 0 1 3 x + 1 + 1 ) + ( 2 0 1 2 x + 2 + 1 ) = ( 2 0 1 1 x + 3 + 1 ) + ( 2 0 1 0 x + 4 + 1 )
<=>
x + 2014 2013 + x + 2014 2012 − x + 2014 2011 − x + 2014 2010 = 0 \frac{x+2014}{2013} + \frac{x+2014}{2012} - \frac{x+2014}{2011} - \frac{x+2014}{2010} = 0 2 0 1 3 x + 2 0 1 4 + 2 0 1 2 x + 2 0 1 4 − 2 0 1 1 x + 2 0 1 4 − 2 0 1 0 x + 2 0 1 4 = 0
<=>
( x + 2014 ) ( 1 2013 + 1 2012 − 1 2011 − 1 2010 ) = 0 (x + 2014)(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010})=0 ( x + 2 0 1 4 ) ( 2 0 1 3 1 + 2 0 1 2 1 − 2 0 1 1 1 − 2 0 1 0 1 ) = 0
Ta có
1 2013 + 1 2012 − 1 2011 − 1 2010 \frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010} 2 0 1 3 1 + 2 0 1 2 1 − 2 0 1 1 1 − 2 0 1 0 1 ≠ 0 \neq 0 = 0
=> x + 2014 = 0
=> x = -2014