[tex]\frac{x^2 + 2x +2}{x+1}+\frac{x^2+8x+20}{x+4} = \frac{x^2 +4x +6}{x+2}+ \frac{x^2 + 6x +12}{x+3}\Leftrightarrow \frac{(x+1)^2+1}{x+1}+\frac{(x+4)^2+4}{x+4}=\frac{(x+2)^2+2}{x+2}+\frac{(x+3)^2+3}{x+3}\Leftrightarrow x+1+\frac{1}{x+1}+x+4+\frac{4}{x+4}=x+2+\frac{2}{x+2}+\frac{3}{x+3}\Leftrightarrow \frac{1}{x+1}+\frac{4}{x+4}=\frac{2}{x+2}+\frac{3}{x+3}\Leftrightarrow \frac{1}{x+1}-1+\frac{4}{x+4}-1=\frac{2}{x+2}-2+\frac{3}{x+3}-1\Leftrightarrow \frac{-x}{x+1}+\frac{-x}{x+4}=\frac{-x}{x+2}+\frac{-x}{x+3}\Leftrightarrow -x(\frac{1}{x+1}+\frac{1}{x+4}-\frac{1}{x+2}-\frac{1}{x+3})=0\Leftrightarrow -x(\frac{x+5}{x^2+5x+4}-\frac{x+5}{x^2+5x+6})=0\Leftrightarrow -x(x+5)(\frac{1}{x^2+5x+4}-\frac{1}{x^2+5x+6})=0\Leftrightarrow -x(x+5).\frac{2}{(x^2+5x+4)(x^2+5x+6)}=0\Leftrightarrow x=0 hoặc x=-5[/tex]