Giải phương trình

L

lp_qt

$\left\{\begin{matrix}
a=\sqrt{x+2009} & \\
b=\sqrt{x+1} &
\end{matrix}\right.(a;b \ge 0)$

$$\rightarrow \left\{\begin{matrix}
(1+ab)(a-b)=2008& \\
a^2-b^2=2008 &
\end{matrix}\right.
\rightarrow (1+ab)(a-b)=a^2-b^2(=2008)$$

• $a=b \iff ....$

• $a \ne b \rightarrow 1+ab=a+b \iff (a-1)(b-1)=0 \iff ....$
 
Last edited by a moderator:
Top Bottom