giải phương trình

X

xuanquynh97

$4\sqrt{x+1}+2\sqrt{2x+3}$\leq $\left ( x-1 \right )\left ( x^{2}-2 \right )$ (*)

ĐK: $x$ \geq -1

Với x=-1 thỏa mãn (*)

Với $x>-1$ (*) \Leftrightarrow $x^3-x^2-2x+2-4\sqrt{x+1}-2\sqrt{2x+3}$ \geq 0

\Leftrightarrow $x^3-x^2-5x+3+(x+3-2\sqrt{2x+3})+2(x+1)-4\sqrt{x+1}$ \geq 0

\Leftrightarrow $(x^2+2x+1)(x-3)+ \dfrac{(x-3)^2-4(2x+3)}{x+3+2\sqrt{2x+3}}+2\sqrt{x+1}.\dfrac{x+1-4}{\sqrt{x+1}+2}$ \geq 0

\Leftrightarrow $(x+1)^2(x-2)+\dfrac{(x+1)(x-3)}{x+3+2\sqrt{2x+3}}+(x-3).\dfrac{2\sqrt{x+1}}{2+\sqrt{x+1}}$\geq 0

\Leftrightarrow $(x-3)[(x+1)^2+\dfrac{x+1}{x+3+2\sqrt{2x+3}}+\dfrac{2\sqrt{x+1}}{\sqrt{x+1}+2}$ \geq 0

\Leftrightarrow $x$ \geq 3
 
Last edited by a moderator:
Top Bottom