Giải phương trình

H

ho_van_hoang

1,Đặt x^2 + x = t ; t \geq-1/4.
\Rightarrow pttt: (t +1)(t + 12) = 12
\Leftrightarrowt^2+13t = 0
\Leftrightarrowt = 0 hoặc t =-13(loại)
Khi t = 0 \Rightarrow x^2 + x = 0
\Leftrightarrow x = 0 hoặc x = -1.
 
H

ho_van_hoang

2,Đặt \frac{x^2 - 1}{3x + 2}=t
\Rightarrow pttt: t^2 - 5t - 6=0
\Leftrightarrow (t - 2)(t - 3)=0
\Leftrightarrow t=2 hoặc t=3
khi t=2 \Rightarrow \frac{x^2 - 1}{3x + 2}=2
\Leftrightarrow x^2 - 1=6x + 4
\Leftrightarrow x^2 - 6x - 5=0
\Leftrightarrow x=1 hoặc x=5.
 
Last edited by a moderator:
Top Bottom