giai phuong trinh

N

newstarinsky

1)ĐK $sinx\not=0$
PT tương đương
$cos^2x(1+cosx)=sin^2x(1+sinx)\\
\Leftrightarrow (1-sinx)(1+sinx)(1+cosx)=(1-cosx)(1+cosx)(1+sinx)\\
\Leftrightarrow (1+sinx)(1+cosx)(sinx+cosx)=0$

2)ĐK..........
$\dfrac{sin^2x}{cos^2x}=\dfrac{1-cos^3x}{1-sin^3x}\\
\Leftrightarrow sin^2x(1-sin^3x)=cos^2x(1-cos^3x)\\
\Leftrightarrow (1-cosx)(1+cosx)(1-sinx)(1+sinx+sin^2x)=(1-sinx)(1+sinx)(1-cosx)(1+cosx+cos^2x)\\
\Leftrightarrow (1-cosx)(1-sinx)[(1+cosx)(1+sinx+sin^2x)-(1+sinx)(1+cosx+cos^2x]=0\\
\Leftrightarrow (1-cosx)(1-sinx)[sin^2x-cos^2x+sin^2x.cosx-sinx.cos^2x]=0\\
\Leftrightarrow (1-cosx)(1-sinx)(sinx-cosx)(sinx+cosx+sinx.cosx)=0$
 
Y

youaremysoul

1. cot^2 x=(1+sinx)/(1+cosx)
2. (1-cos2x)/(1+cos2x)=(1-cos^3 x)/(1-sin^3 x)



1,
đk:bạn tự đặt nha

pt \Leftrightarrow $\dfrac{cos^2x}{sin^2x} = \dfrac{1 + sinx}{1+cosx}$

\Leftrightarrow $cos^2x + cos^3x - sin^2x - sin^3x = 0$

\Leftrightarrow $(cosx - sinx)(cosx + sinx) + (cosx - sinx)(1 + sinxcosx) = 0$

\Leftrightarrow $(cosx - sinx)(cosx + sinx + cosxsinx + 1) = 0$

bạn giải nốt nha

2,
đk:bạn tự đặt nha
pt \Leftrightarrow $ \dfrac{sin^2x}{cos^2x} = \dfrac{1 - cos^3x}{1 - sin^3x}$

\Leftrightarrow $sin^2x - sin^6x = cos^2x - cos^6x$

\Leftrightarrow $(sin^2x - cos^2x) = (sin^2x - cos^2x)(sin^4x + cos^4x + sin^2xcos^2x)$

\Leftrightarrow $(sin^2x - cos^2x) = (sin^2x - cos^2x)( 1 + sin^2xcos^2x)$

\Leftrightarrow $(sin^2x - cos^2x)(1 - 1 + sin^2xcos^2x) = 0$

\Leftrightarrow $\dfrac{1}{4}(sinx - cosx)(sinx + cosx)(1 - cos2x)(1+cos2x) = 0$

bạn giải nốt nha

 
Top Bottom