giải phương trình

N

nguyenbahiep1

câu a không thấy rõ được đề

câu b,

[TEX]1+x-2x^2= \sqrt{4x^2 -1} -\sqrt{2x+1} \\ a = \sqrt{4x^2 -1} \geq 0 \\b =\sqrt{2x+1}\geq 0 \\ \frac{b^2-a^2}{2} = 1+x-2x^2 \\ \Rightarrow 1+x-2x^2= \sqrt{4x^2 -1} -\sqrt{2x+1} \Leftrightarrow \frac{b^2-a^2}{2} = a-b \\ (b-a)(b+a) = -2(b-a) \\ TH_1: b = a \Rightarrow \sqrt{4x^2 -1} = \sqrt{2x+1} \Rightarrow x = 1 , x = -\frac{1}{2} \\ TH_2 : b+a = - 2 (V/N) [/TEX]
 
E

englandhuynh

[TEX]a, x^2 +(3-\sqrt{x^2-2} x) =1+2\sqrt{x^2+2}[/TEX]
[TEX]\Leftrightarrow \ x^2+3-\sqrt{x^2-2}x=1+2\sqrt{x^2+2}[/TEX]
[TEX]\Leftrightarrow \ x^2+2=\sqrt{x^2-2}(x+2)[/TEX]
[TEX]\Leftrightarrow \ \frac{ x^2+2}{x+2}[/TEX][TEX]=\sqrt{x^2-2}[/TEX]
[TEX]\Leftrightarrow \ \left{\begin{(x^2+2)/(x+2)>=0}\\{x^2-2=((x^2+2)/(x+2))^2} [/TEX]
 
Last edited by a moderator:
T

try_mybest

b/$$1+x-x^2=\sqrt{4x^2-1}-\sqrt{2x+1}$$
đk : $x\geq\dfrac{1}{2}$

$$(1)<=> (1-x)(2x+1)=\sqrt{(2x-1)(2x+1)}-\sqrt{2x+1}$$
$$<=>\sqrt{2x+1}. [(1-x)\sqrt{2x+1}-\sqrt{2x-1}+1]=0$$
 
Top Bottom