[TEX]TXD : x \geq \sqrt{3} \\ \frac{(x+\sqrt{3})( \sqrt{x}-\sqrt{x-\sqrt{3}})}{-\sqrt{3}} +\frac{(x-\sqrt{3})( \sqrt{x}+\sqrt{x-\sqrt{3}})}{\sqrt{3}} = \sqrt{x} \\ \Leftrightarrow (x.\sqrt{x} + x.\sqrt{x-\sqrt{3}} - \sqrt{3}.\sqrt{x} - \sqrt{3}.\sqrt{x-\sqrt{3}})-(x.\sqrt{x} - x.\sqrt{x-\sqrt{3}} + \sqrt{3}.\sqrt{x} - \sqrt{3}.\sqrt{x-\sqrt{3}}) = \sqrt{3.x}[/TEX]
[TEX] \Leftrightarrow 2x.\sqrt{x-\sqrt{3}} - 2\sqrt{3x} = \sqrt{3x}\\ \Leftrightarrow 2x.\sqrt{x-\sqrt{3}} = 3.\sqrt{3x} \\ \Leftrightarrow 2.\sqrt{x}.\sqrt{x-\sqrt{3}} = 3.\sqrt{3} \\ \Leftrightarrow 4x(x -\sqrt{3}) = 27 \\ \Leftrightarrow 4x^2 - 4\sqrt{3}.x -27 = 0 \\ \Leftrightarrow x = \frac{\sqrt{3}+\sqrt{30}}{2}[/TEX]