[TEX] 2(x^2 + 2) = 5 \sqrt{x^3+1} \ (1) \\ \Leftrightarrow 2(x^2 + 2) = 5 \sqrt{(x+1)(x^2 - x + 1)}[/TEX]
Đặt [TEX] a = \sqrt{x+1}; \ b = \sqrt{x^2 - x + 1} [/TEX]
\Rightarrow [TEX] a^2 + b^2 = x + 1 + x^2 - x + 1 = x^2 + 2 [/TEX]
[TEX] (1) \Leftrightarrow 2(a^2 + b^2) = 5ab \\ \Leftrightarrow 2a^2 + 2b^2 - 5ab = 0 \\ (2a^2 - ab) - ( 4ab - 2b^2) = 0 \\ \Leftrightarrow (a - 2b)(2a - b) = 0 \\ \Leftrightarrow \left[\begin{a = 2b}\\{b = 2a } \Leftrightarrow \left[\begin{\sqrt{x+1} = 2 \sqrt{x^2 - x + 1}}\\{\sqrt{x^2-x+1} = 2 \sqrt{x+1}} \Leftrightarrow \left[\begin{4x^2 - 5x + 3 = 0 \ (1) }\\{x^2 - 5x - 3 = 0 \ (2) }[/TEX]
Giải (1): [TEX] \Delta = 25 - 4.4.3 = -23 < 0[/TEX] \Rightarrow p/trình vô nghiệm
Giải (2)
[TEX] \Delta = 25 + 12 = 37 > 0[/TEX]
\Rightarrow [TEX] x_1 = \frac{5 + \sqrt{37}}{2} \\ x_2 = \frac{5 - \sqrt{37}}{2}[/TEX]