View attachment 148046
Các bạn giải chi tiết cụ thể giúp mình nhé!
[tex]a, x^2+\sqrt[3]{x^4-x^2}=2x+1\\\\ => x+\sqrt[3]{x-\frac{1}{x}}=2+\frac{1}{x}\\\\ +, \sqrt[3]{x-\frac{1}{x}}=a\\\\ => pt <=> a^3+a-2=0\\\\ <=> a^3-a^2+a^2-a+2a-2=0\\\\ <=> (a-1).(a^2+a+2)=0\\\\ <=> a=1\\\\ <=>...[/tex]
[tex]b, pt <=> [\frac{1}{2}.(3x-7)+\frac{3}{2}.(7-x)]\sqrt{3x-7}+[\frac{3}{2}.(3x-7)+\frac{1}{2}.(7-x)].\sqrt{7-x}=32\\\\ +, (\sqrt{3x-7};\sqrt{7-x})=(a;b)\\\\ => pt <=> (\frac{1}{2}a^2+\frac{3}{2}b^2).a+(\frac{3}{2}a^2+\frac{1}{2}b^2).b=32\\\\ <=> (a^2+3b^2).a+(3a^2+b^2).b=64\\\\ <=> a^3+3ab^2+b^3+3a^2b=64\\\\ <=> (a+b)^3=4^3\\\\ <=> a+b=4\\\\ => \sqrt{3x-7}+\sqrt{7-x}=4\\\\ <=> ....[/tex]
[tex]c, \sqrt{x}=a\\\\ => pt <=> a^2=2017-\sqrt{2017-a}\\\\ +, \sqrt{2017-a}=b\\\\ => 2017=b^2+a\\\\ > pt <=> a^2=b^2+a-b\\\\ <=> a^2-b^2-(a-b)=0\\\\ <=> (a-b).(a+b-1)=0\\\\ +, a=b <=> \sqrt{x}=\sqrt{2017-\sqrt{x}}\\\\ <=> x=2017-\sqrt{x}\\\\ <=>.... +, a+b-1=0\\\\ <=> 1-\sqrt{x}=\sqrt{2017-\sqrt{x}}\\\\ <=> x-2\sqrt{x}+1=2017-\sqrt{x}\\\\ <=> ...[/tex]