I_ Giải các phương trình
1) [tex]\sqrt{x} + \sqrt{y-1} + \sqrt{z-2} = \frac{1}{2}(x+y+z)[/tex]
2) [tex]x^{2} + 9x + 20 = 2\sqrt{3x+10}[/tex]
3) [tex]\mathfrak{\sqrt{x-1}+\sqrt{4x-4} - \sqrt{25x-25}+2}=0[/tex]
4) [tex]\mathit{\sqrt{9x^{2}+18}+ 2\sqrt{x^{2}+2}-\sqrt{16x^{2}+32}-3=0}[/tex]
5) [tex]\boldsymbol{\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}} =2\sqrt{2}}[/tex]
1) ĐKXĐ:...
[tex]\sqrt{x} + \sqrt{y-1} + \sqrt{z-2} = \frac{1}{2}(x+y+z)\\\Leftrightarrow 2\sqrt{x} + 2\sqrt{y-1} + 2\sqrt{z-2} =x+y+z\\\Leftrightarrow (x-2\sqrt{x}+1)+(y-1-2\sqrt{y-1}+1)+(z-2-2\sqrt{z-2}+1)=0\\\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0\\\Leftrightarrow \left\{\begin{matrix} \sqrt{x}-1=0\\\sqrt{y-1}-1=0 \\\sqrt{z-2}-1=0 \end{matrix}\right.\Leftrightarrow...\Leftrightarrow \left\{\begin{matrix} x=1\\y=2\\z=3 \end{matrix}\right. (t/m)[/tex]
Hoặc có thể dùng đến BĐT Cauchy để làm nhé bạn
Gợi ý [tex]\sqrt{x}\leq \frac{x+1}{2};\sqrt{y-1}\leq \frac{1+y-1}{2};\sqrt{z-2}\leq \frac{1+z-2}{2}[/tex]
2) ĐKXĐ:...
[tex]x^{2} + 9x + 20 = 2\sqrt{3x+10}\\\Leftrightarrow (x^2+6x+9)+(3x+10-2\sqrt{3x+10}+1)=0\\\Leftrightarrow (x+3)^2+(\sqrt{3x+10}-1)^2=0\\\Leftrightarrow \left\{\begin{matrix} x+3=0\\\sqrt{3x+10}-1=0 \end{matrix}\right.\Leftrightarrow x=-3(t/m)[/tex]
3) ĐKXĐ:..
[tex]\sqrt{x-1}+\sqrt{4x-4} - \sqrt{25x-25}+2=0\\\Leftrightarrow \sqrt{x-1}+2\sqrt{x-1} - 5\sqrt{x-1}+2=0\\\Leftrightarrow -2\sqrt{x-1}+2=0\\\Leftrightarrow \sqrt{x-1}=1\\\Leftrightarrow x-1=1\\\Leftrightarrow x=2(t/m)[/tex]
4) ĐKXĐ:...
[tex]\sqrt{9x^{2}+18}+ 2\sqrt{x^{2}+2}-\sqrt{16x^{2}+32}-3=0\\\Leftrightarrow 3\sqrt{x^2+2}+2\sqrt{x^2+2}-4\sqrt{x^2+2}-3=0\\\Leftrightarrow \sqrt{x^2+2}-3=0\\\Leftrightarrow \sqrt{x^2+2}=3\\\Leftrightarrow x^2+2=9\\\Leftrightarrow x^2=7\\\Leftrightarrow x=\pm \sqrt{7}[/tex]
5) ĐKXĐ: [tex]x\geq \frac{5}{2}[/tex]
[tex]\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}} =2\sqrt{2}\\\Leftrightarrow \sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\\\Leftrightarrow \sqrt{(\sqrt{2x-5}+3)^2}+\sqrt{(\sqrt{2x-5}-1)^2}=4\\\Leftrightarrow \left | \sqrt{2x-5}+3 \right |+\left | 1-\sqrt{2x-5} \right |=4[/tex]
Áp dụng BĐT [tex]\left | A \right |+\left | B \right |\geq \left | A+B \right |[/tex] ta được
[tex]\left | \sqrt{2x-5}+3 \right |+\left | 1-\sqrt{2x-5} \right |\geq \left | \sqrt{2x-5}+3 + 1-\sqrt{2x-5} \right |=4[/tex]
Dấu = xảy ra khi [tex](\sqrt{2x-5}+3 )(1-\sqrt{2x-5} )\geq 0\Leftrightarrow \sqrt{2x-5}\leq 1\Leftrightarrow 2x-5\leq 1\Leftrightarrow x\leq 3[/tex]
Kết hợp ĐKXĐ thì [tex]2,5\leq x\leq 3[/tex]