Toán 10 Giải phương trình và bất phương trình (khó)

Y

yelang

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

1) [TEX]4(2x^2+1) + 3(x^2-2x)\sqrt[]{2x-1} = 2(x^3+5x)[/TEX]
2) [TEX]2(x^2-x+6) = 5\sqrt[]{x^3+8}[/TEX]
3) [TEX]2\sqrt[]{x^2+5} = 2\sqrt[]{x-1} +x^2[/TEX]
4) [TEX]\sqrt[]{x+7} - \sqrt[]{10-x} + x^2-2x-66 = 0[/TEX]
5)[TEX]\sqrt[]{3x+1} + \sqrt[]{5x+4} = 3x^2-x+3[/TEX]
6) [TEX]x = 1+ \frac{1}{2}\sqrt[]{x^3+x^2-8x-2} + \sqrt[3]{x^3-20}[/TEX]
7) [TEX]4\sqrt[]{x^2+x+1} = 1+5x+4x^2-2x^3-x^4[/TEX]
8) [TEX]2x^2-15x+34 = 3\sqrt[3]{4x-8}[/TEX]
9) Hệ phương trình:
[TEX]\left{\begin{5x^2y-4xy^2+3y^3-2(x+y)=0}\\{xy(x^2+y^2)+2=(x+y)^2} [/TEX]
10) [TEX]\left{\begin{2x^3-x^2y+x^2+y^2-2xy-y=0}\\{xy+x-2=0} [/TEX]
11) [TEX]\left{\begin{\sqrt[]{x+1} + \sqrt[4]{x-1} - \sqrt[]{y^4+2} = y}\\{x^2 + 2x(y-1) + y^2-6y+1 = 0} [/TEX]
12) [TEX]\left{\begin{2x^2+y^2-3xy+3x-2y+1=0}\\{4x^2-y^2+x+4=\sqrt[]{2x+1} + \sqrt[]{x+4y}} [/TEX]
13) [TEX]\left{\begin{x^2+y+x^3y+xy^2+xy=\frac{-5}{4}}\\{x^4+y^2+xy(1+2x)=\frac{-5}{4}} [/TEX]
14) [TEX]\left{\begin{x^2+y^2+\frac{2xy}{x+y}=1}\\{\sqrt[]{x+y}=x^2-y} [/TEX]
15) [TEX]\left{\begin{2x^3+x=2x^2+y}\\{\sqrt[]{x^2+12x+12\sqrt[]{y}+3}=3y-2\sqrt[]{x}-1} [/TEX]
16) [TEX]\left{\begin{(3x-5)(x^2-1)=y(x^2+3x-y-6)}\\{\sqrt[4]{-y^2-2y+1}=y-3x+4} [/TEX]
17) [TEX]\left{\begin{x\sqrt[]{12-y} + \sqrt[]{y(12-x^2)} = 12}\\{x^3-8x-1=2\sqrt[]{y-2}} [/TEX]

 
Last edited by a moderator:
B

bancuamacarong

câu 13 cô ra rồi câu 2 tách câu 9 pt 2 phân tích thành tích
 
Last edited by a moderator:
D

dien0709

1) $4(2x^2+1) + 3(x^2-2x)\sqrt[]{2x-1} = 2(x^3+5x)[/TEX]
2) [TEX]2(x^2-x+6) = 5\sqrt[]{x^3+8}$ 1)$\iff 3x(x-2)\sqrt{2x-1}=2(x-2)(x^2-2x+1)$ , $\to x=2$ $3x\sqrt{2x-1}=2[x^2-(2x-1)]$ $\iff 3uv=2u^2-2v^2\iff (u-2v)(2u+v)=0$ 2)$pt \iff 2[(x^2-2x+4)+(x+2)]=5\sqrt{(x+2)(x^2-2x+4)}$ $\iff 2u^2+2v^2=5uv\iff (u-2v)(2u-v)=0$[/SIZE][/TEX]
 
D

dien0709

9) Hệ phương trình:
[TEX]\left{\begin{5x^2y-4xy^2+3y^3-2(x+y)=0}(1)\\{xy(x^2+y^2)+2=(x+y)^2}(2) [/TEX]
10) [TEX]\left{\begin{2x^3-x^2y+x^2+y^2-2xy-y=0}(1)\\{xy+x-2=0} [/TEX]


9)$pt (2)\to xy[(x+y)^2-2xy]+2=(x+y)^2\to (xy-1)[(x+y)^2-2xy-2]=0$

$\star xy=1 , (1)\to y^4-2y^2+1=0$

$\star\star (x+y)^2-2xy-2=0\to x^2+y^2=2$

$(1)\to 3y(y^2+x^2)+2x^2y-4xy^2-2x-2y=0\to 4y-4xy^2+2x^2y-2x=0$

$\to (x-2y)(xy-1)=0 \to x=2y\to 5y^2=2$

10)$(1)\iff 2x(x^2-y)+(x^2-y)-y(x^2-y)=0$

$\to x^2=y $ hoặc $y=2x+1$ thay vào (2)=>...
 
Top Bottom