Giải pt: [tex]\sqrt{4x^2+2x-1}+\sqrt{-4x^2+2x+1}=x^2+x+\frac{5}{4}[/tex]
Đk: [tex]\left\{\begin{matrix} 4x^2+2x-1\geq 0\\ -4x^2+2x+1 \geq 0\end{matrix}\right.[/tex]
[tex]\sqrt{4x^2+2x-1}+\sqrt{-4x^2+2x+1}=x^2+x+\frac{5}{4}[/tex]
[tex]\Leftrightarrow 4x^2+4x+5-4\sqrt{-4x^2+2x+1}-4\sqrt{4x^2+2x-1}=0[/tex]
[tex]\Leftrightarrow (4x^2-4x+1)+2(4x^2+2x-1-2\sqrt{4x^2+2x-1}+1)+2(-4x^2+2x+1-2\sqrt{-4x^2+2x+1}+1)=0[/tex]
[tex]\Leftrightarrow (2x-1)^2+2(\sqrt{4x^2+2x-1}-1)^2+2(\sqrt{-4x^2+2x+1}-1)^2=0[/tex]
[tex]\Leftrightarrow ...\Leftrightarrow x=\frac{1}{2}(t/m)[/tex]