Giải phương trình: [tex]\sqrt{3x^2-6x-6}=3\sqrt{(2-x)^5}+(7x-19)\sqrt{2-x}[/tex]
[tex]\sqrt{3x^2-6x-6}=3\sqrt{(2-x)^5}+(7x-19)\sqrt{2-x}=\sqrt{2-x}[3(2-x)^2+7x-19]=\sqrt{2-x}(3x^2-5x-8)+\sqrt{2-x}[/tex]
[tex]\Leftrightarrow \sqrt{3x^2-6x-6}-\sqrt{2-x}=\sqrt{2-x}(3x^2-5x-8)[/tex]
[tex]\Leftrightarrow \frac{3x^2-5x-8}{\sqrt{3x^2-6x-6}+\sqrt{2-x}}=\sqrt{2-x}(3x^2-5x-8)[/tex]
[tex]\Leftrightarrow \begin{bmatrix} 3x^2-5x-8=0\\ \frac{1}{\sqrt{3x^2-6x-6}+\sqrt{2-x}}=\sqrt{2-x} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=\frac{8}{3}(ko.t/m)\\ x=-1(t/m)\\ \sqrt{3x^2-6x-6}.\sqrt{2-x}=x-1 \end{bmatrix}[/tex]
Do [tex]\sqrt{3x^2-6x-6}.\sqrt{2-x}\geq 0\geq x-1 (\forall đkxđ)[/tex]
Vậy [tex]x=-1[/tex]
P/s : bổ sung đkxđ họ tui nhó :vvv