[tex]tanx+cot2x=2cot4x[/tex]
Giúp mình câu này với ạ
Điều kiện: [tex]x \neq \frac{k\pi}{2}[/tex]
[tex]tanx + cot2x = 2cot4x[/tex]
[tex]\Leftrightarrow tanx + \frac{1}{tan2x} - \frac{1}{tan4x} = 0[/tex]
[tex]\Leftrightarrow tanx + \frac{1- tan^2x}{2tanx} - \frac{2(1-tan^22x)}{2tan^22x} = 0[/tex]
[tex]\Leftrightarrow \frac{2tan^2x + 1 - tan^2x}{2tanx} - \frac{(1 - tan^22x)(1-tan^2x)}{2tanx} = 0[/tex]
[tex]\Leftrightarrow tan^2x + 1 -(1-tan^22x)(1 -tan^2x) = 0[/tex]
[tex]\Leftrightarrow tan^2x + 1 - (1 - \frac{4tan^2x}{(1-tan^2x)^2})(1-tan^2x) = 0[/tex]
[tex]\Leftrightarrow tan^2x + 1 -(1-tan^2x) + \frac{4tan^2x}{1-tan^2x} = 0[/tex]
[tex]\Leftrightarrow 1 - tan^4x - (1-tan^2x)^2 + 4tan^2x = 0[/tex]
[tex]\Leftrightarrow 1 - tan^4x - 1 + 2tan^2x - tan^4x + 4tan^2x = 0[/tex]
[tex]\Leftrightarrow 2tan^4x - 6tan^2x = 0[/tex]