[tex](sinx+cosx)^3-3cosx-sinx=3<=>sin^3x+cos^3x+3sinxcosx(sinx+cosx)=3cosx+sinx<=>\frac{sin^3x}{cosx^3}+1+\frac{3sinx(sinx+cosx)}{cos^2x}=\frac{3}{cos^2x}+\frac{sinx}{cos^3x}<=>tan^3x+3tanx(1+tanx)=3(1+tan^2x)+tanx(1+tan^2x)[/tex]
ddeens day ez
[tex](sinx+cosx)^3-3cosx-sinx=3<=>sin^3x+cos^3x+3sinxcosx(sinx+cosx)=3cosx+sinx<=>\frac{sin^3x}{cosx^3}+1+\frac{3sinx(sinx+cosx)}{cos^2x}=\frac{3}{cos^2x}+\frac{sinx}{cos^3x}<=>tan^3x+3tanx(1+tanx)=3(1+tan^2x)+tanx(1+tan^2x)[/tex]
ddeens day ez
[tex](sinx+cosx)^3-3cosx-sinx=3<=>sin^3x+cos^3x+3sinxcosx(sinx+cosx)=3cosx+sinx<=>\frac{sin^3x}{cosx^3}+1+\frac{3sinx(sinx+cosx)}{cos^2x}=\frac{3}{cos^2x}+\frac{sinx}{cos^3x}<=>tan^3x+3tanx(1+tanx)=3(1+tan^2x)+tanx(1+tan^2x)[/tex]
ddeens day ez