Giải phương trình căn thức

V

vipboycodon


C1: VT = $\sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9} \ge \sqrt{4}+\sqrt{9} = 5$
VP = $-(x+1)^2+5 \le 5$
VT = VP $\leftrightarrow x = -1$

C2: $PT \leftrightarrow \sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+x^2+2x+1 = 0$
$\leftrightarrow \dfrac{(\sqrt{3x^2+6x+7}-2)(\sqrt{3x^2+6x+7}+2)}{\sqrt{3x^2+6x+7}+2}+\dfrac{(\sqrt{5x^2+10x+14}-3)(\sqrt{5x^2+10x+14}+3)}{\sqrt{5x^2+10x+14}+3}+(x+1)^2 = 0$
$\leftrightarrow \dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+(x+1)^2 = 0$
$\leftrightarrow \dfrac{3(x+1)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5(x+1)^2}{\sqrt{5x^2+10x+14}+3}+(x+1)^2 = 0$
$\leftrightarrow (x+1)^2(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{ \sqrt{5x^2+10x+14}+3}+1) = 0$
$\leftrightarrow x = -1$ (vì cái kia > 0 \forall x)
 
Last edited by a moderator:
Top Bottom