a) giải pt $(x+1)\sqrt{x^2-2x+3}=x^2+1$
b)Tìm nghiệm nguyên của pt: [tex]5x^2+5y^2+5xy-7x+14y=0[/tex]
a) $(x+1)\sqrt{x^2-2x+3}=x^2+1$
$(x+1)\left ( \sqrt{x^2-2x+3}-2 \right )=x^2+1-2(x+1)$
$\Longleftrightarrow (x+1)\dfrac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=x^2-2x-1$
$\Longleftrightarrow (x+1)\dfrac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}=x^2-2x-1$
$\Longleftrightarrow (x^2-2x-1)\left (\dfrac{x+1}{\sqrt{x^2-2x+3}+2}-1 \right )=0$
[tex]\Longrightarrow \begin{bmatrix} x^2-2x-1=0\\ \dfrac{x+1}{\sqrt{x^2-2x+3}+2}=1 \end{bmatrix}[/tex]
[tex]\Longleftrightarrow \begin{bmatrix} x=1 \pm \sqrt{2}\\ x+1=\sqrt{x^2-2x+3}+2 \end{bmatrix}[/tex]
[tex]\Longleftrightarrow \begin{bmatrix} x=1 \pm \sqrt{2}\\ x-1=\sqrt{x^2-2x+3} \end{bmatrix}[/tex]
[tex]\Longleftrightarrow \begin{bmatrix} x=1\pm \sqrt{2}\\ x^2-2x+1=x^2-2x+3 \end{bmatrix}[/tex]
Vì phương trình $x^2-2x+1=x^2-2x+3$ vô nghiệm
$\Longleftrightarrow x=1 \pm \sqrt{2}$