ĐK: $4 \ge x \ge -1$
Đặt $\sqrt{x+1}=a (a \ge 0); \ \sqrt{4-x}=b (b \ge 0)$
Ta có HPT: $\left\{\begin{matrix} a+b+3ab=9 \\ a^2+b^2=5 \end{matrix}\right.$
Đặt $a+b=S;ab=P\ (S,P \ge 0)$ ; ta có:
$\left\{\begin{matrix} S+3P=9 \\ S^2-2P=5 \end{matrix}\right. \iff \left\{\begin{matrix} P=\dfrac{9-S}{3}=3-\dfrac{S}{3} \\ S^2+\dfrac{2}{3}S-11=0 \end{matrix}\right. \iff \left\{\begin{matrix} P=3-\dfrac{S}{3} \\ \left[\begin{matrix} S=-\dfrac{11}{3} (\text{loại}) \\ S=3 \end{matrix}\right.\end{matrix}\right.$
$\iff \left\{\begin{matrix} S=3 \\ P=2 \end{matrix}\right. \iff \left\{\begin{matrix} a+b=3 \\ ab=2 \end{matrix}\right.$
$\Rightarrow a,b$ là $2$ nghiệm của PT: $x^2-3x+2=0 \iff \left[\begin{matrix} a=2;b=1 \\ a=1;b=2 \end{matrix}\right.$
$\iff \left\{\begin{matrix} x=3 \ (tm) \\ x=0 \ (tm) \end{matrix}\right.$