giải hệ

P

pe_lun_hp

$\left\{ \begin{array}{l} \sqrt{x-y}=9-|x+2y| \\ x(x+4y-2)+y(4y+2)=41 \end{array} \right.$

$\Leftrightarrow \left\{ \begin{array}{l} \sqrt{x-y}=9-|x+2y| \\x^2 + 4xy + 4y^2 - 2x + 2y =41 \end{array} \right.$


$\Leftrightarrow \left\{ \begin{array}{l} \sqrt{x-y}=9-|x+2y| \\ (x+2y)^2 - 2(x - y) =41 \end{array} \right.$

Đặt $ \left\{ \begin{array}{l} \sqrt{x-y}=a \\ |x+2y| =b \end{array} \right. \ \ \ \ (a,b \geq 0)$

$\Rightarrow \left\{ \begin{array}{l}a=9-b \\ b^2 - 2a^2 =41 \end{array} \right.$

$\Rightarrow \left\{ \begin{array}{l}a=2 \\ b=7 \end{array} \right.$

$\Rightarrow \left\{ \begin{array}{l}\sqrt{x-y}=2 \\ |x+2y|=7 \end{array} \right.$

GIẢI hpt bình thường.
 
Top Bottom