i, [TEX]2-\sqrt{x^2y^4+2xy^2-y^4+1}=2y^2(3-\sqrt{2}-x)[/TEX]
ii,[TEX]\sqrt{x-y^2}+x=3[/TEX]
[TEX]\begin{array}{l} \left\{ \begin{array}{l}\frac{{\left( {xy^2 + 1 - 3y^2 } \right)\left( {xy^2 + 1 + 3y^2 } \right)}}{{\sqrt {\left( {xy^2 + 1} \right)^2 - y^4 } + 2\sqrt 2 y^2 }} = 2\left( {xy^2 + 1 - 3y^2 } \right)(1) \\ \sqrt {x - y^2 } + x = 3(2) \\ \end{array} \right. \\ (2) = > x > \frac{3}{2} = > 3x^2 y^4 > 4y^4 = > 4y^4 < 3\left( {xy^2 + 1} \right)^2 \\ = > \frac{{xy^2 + 1 + 3y^2 }}{{\sqrt {\left( {xy^2 + 1} \right)^2 - y^4 } + 2\sqrt 2 y^2 }} < 2 \\ (1) \Leftrightarrow xy^2 + 1 - 3y^2 = 0 \\ Dk:x \le 3 = > hpt \Leftrightarrow \left\{ \begin{array}{l}xy^2 + 1 - 3y^2 = 0 \\\sqrt {x - y^2 } + x = 3 \\ \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y^2 = x - \left( {3 - x} \right)^2 \\ x\left[ {x - \left( {3 - x} \right)^2 } \right] + 1 - 3\left[ {x - \left( {3 - x} \right)^2 } \right] = 0 \\ \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}y^2 = x - \left( {3 - x} \right)^2 \\\left( {x - 2} \right)\left( {x^2 - 8x + 14} \right) = 0 \\ \end{array} \right.\Leftrightarrow \left[ \begin{array}{l}x = 2;y = \pm 1 \\ x = 4 - \sqrt 2 ;y^2 = \sqrt 2 + 1 \\ \end{array} \right. \\ (x;y) = \left( {2;1} \right),\left( {2; - 1} \right);\left( {4 - \sqrt 2 ;\sqrt {\sqrt 2 + 1} } \right);\left( {4 - \sqrt 2 ; - \sqrt {\sqrt 2 + 1} } \right) \\ \end{array}[/TEX]
p/s hôm nọ thấy cái đề chuối hơn, đang nghĩ ko biết nên chứng minh cái bđt kia kiểu gì mà ko dính đạo hàm