1. [tex]36-y^2=4x^2-4xy+y^2\Rightarrow 4x^2-4xy+2y^2=36\Rightarrow 2x^2-2xy+y^2=18[/tex]
[tex]x^2-|xy|+9=0\Rightarrow 9=|xy|-x^2\Rightarrow 18=2|xy|-2x^2=2x^2-2xy+y^2\Rightarrow 4x^2-2(|xy|+xy)+y^2=0[/tex]
+ Với [tex]xy< 0[/tex] ta có: [tex]4x^2+y^2=0\Rightarrow x=y=0[/tex](không t/m)
+ Với [tex]xy\geq 0\Rightarrow 4x^2-4xy+y^2=0\Rightarrow (2x-y)^2=0\Rightarrow \left\{\begin{matrix} 36-y^2=0\\ 2x=y \\ xy\geq 0 \end{matrix}\right.\Rightarrow \Rightarrow y=6,x=3 hoặc y=-6,x=-3[/tex]
2. [tex]x^2+x+\sqrt{x^3-1}=2x\sqrt{x}\Leftrightarrow (x^2+x-2x\sqrt{x})+\sqrt{x-1}.\sqrt{x^2+x+1}=0\Leftrightarrow (x-\sqrt{x})^2+\sqrt{x-1}.\sqrt{x^2+x+1}=0\Leftrightarrow x(\sqrt{x}-1)^2+\sqrt{x-1}.\sqrt{x^2+x+1}=0\Leftrightarrow x(\frac{x-1}{\sqrt{x}+1})^2+\sqrt{x-1}.\sqrt{x^2+x+1}=0\Leftrightarrow \sqrt{x-1}.(x.\frac{\sqrt{x-1}^3}{(\sqrt{x}+1)^2}+\sqrt{x^2+x+1})=0\Rightarrow \sqrt{x-1}=0\Leftrightarrow x=1[/tex]
3. [tex]x^2+5y^2+2y-4xy-3=0\Leftrightarrow (x+2y)^2+(y+1)^2=4\Rightarrow (y+1)^2\leq 4\Rightarrow (y-1)(y+3)\leq 0\Rightarrow -3\leq y\leq 1[/tex]
Để y nhỏ nhất thì y = - 3 [tex]\Rightarrow (x-3)^2=0\Rightarrow x=3[/tex]
Vậy (x,y)=(3,-3)